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Roughness of sandpile surfaces
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We study the surface roughness of prototype models displaying self-organized criti§&i§ and their
noncritical variants in one dimension. For SOC systems, we find that two seemingly equivalent definitions of
surface roughness yield different asymptotic scaling exponents. Using approximate analytical arguments and
extensive numerical studies we conclude that this ambiguity is due to the special scaling properties of the
nonlinear steady state surface. We also find that there is no such ambiguity for non-SOC models, although there
may be intermediate crossovers to different roughness values. Such crossovers need to be distinguished from
the true asymptotic behavior, as in the case of a noncritical disordered sandpile model studied by Barker and
Mehta[Phys. Rev. B61, 6765(2000].
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Since the original proposal by Bak, Tang, and Wisenfeldsteady state profile or about the mean instantaneous surface,
[1] there has been a large body of work directed towardshe latter being the correct choice for moving interfaces. The
understanding the ubiquity of scale invariance in externallyassertion made by KSG is valid onlyhfin Eq. (1) is defined
driven open dissipative systems using the concept of selfas the fluctuation around the nonlinear steady state surface.
organized criticality (SOQ. The sandpile is a prototype We also study modifications of the LLS which have nonlin-
model system which has been extensively used as a parsar steady state profiles but which do not display SOC and
digm of SOC[2,3]. The principal aim has been to elucidate find that there is no such ambiguity in the asymptotic rough-
how slowly driven dissipative systems with fast relaxationness exponent. Thus, we conjecture that the roughness expo-
mechanisms display long-tailed distributions of activity nent is uniquely defined for systems not displaying SOC
sizes. Recently, there has been a resurgance of interest éven though they may possess nontrivial steady state sur-
sandpile models in order to understand SOC in connectiofaces[9]. For SOC systems the ambiguity exists and one
with better understood scale invariance in other nonequilibneeds to define the roughness appropriately. Our results have
rium phenomena such as absorbing state phase trang#ipns important bearings on studies such as the recent one by
and driven interfacef5]. Barker and Meht410] who observed an anomalously large

In Ref. [6], Krug, Socolar, and GrinsteifKSG) studied  roughness exponent in a sandpile model with structural dis-
the surface fluctuations in a prototype model of SOC, theorder.
limited local sandpile(LLS) [3] and its variations in one The limited local sandpile model id=1 is defined as
spatial dimension and concluded that the interfacial fluctuafollows [see Fig. 18)]: on a one dimensional lattice of sites
tions, although nontrivial, are evidently unconnected to the =0,1, ... L we define an integer height variatie. One
criticality of the system. In fact, they argued that the evolu-grain of sand added at a randomly chosen site increases the
tion of height fluctuationsh(x,t) can be described by an height at that site by 1h;—h;+1. The configuration is
extension of the Kardar-Parisi-ZharigPZ) [7,8] equation  stable if the local slopes satisg=h;_ ; —h;<z. for all i,

for an anchored interface, where we chose.=2 (our results are essentially unchanged
for z.=2). An instability occurs when by addition of grains
ah=DaZh+ca,h+\(3,h)2+ p(x,t) (1) atsitei+1, the local slope exceeds the threshglet z ; in
X ’ ’

this casez, grains are transferred from colunma-1 to col-
where n(x,t) is a Gaussian white noise. The linear term umn i. Sub_sequently, columngand|+2 may become un-

. ' o L stable, setting off further topplings, leading to an avalanche.
caxh is more relevant than the diffusion tefwih and the  The grains involved in an avalanche leave the system if they
KPZ nonlinearity\ (d,h)? (in a renormalization group sense reach sitei=0 [hy(t)=0V t]. A new grain is added after
and, since the interface is anchored, cannot be eliminated iyie system has attained a stable configuration. The final con-
a Galilean shift. This term is responsible for transportingfiguration reached is independent of the order in which the
fluctuations up the pile thus relating the spatial roughness dfites are updated in case more than one site become unstable.
the anchored interface to the dynamical roughening of aVe count one unit of timéMonte Carlo stepfor everyL
moving KPZ interface ird=1, @ s=Bkpz1p)=1/3. This  grains added.
argument can be easily extended to higher dimensions. The standard way of quantifying avalanches in these sys-

In this paper we study interface roughness in LLS andems is to count the numben of grains that leave the pile
related models and find that effect of the criticality of the after each depositio[8]. The criticality of the model is re-
system is somewhat subtle and is due to the nontrivial naturéected in a broad probability distribution of avalanche sizes,
of the steady state surface. The value of surface roughnes{m) [Fig. 1(b)], which has no other length scale except the
depends on whether it is measured about this nontriviagystem sizd..
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FIG. 1. (a) Dynamics of the sandpile: An initial surfacthick line), on becoming unstable, relaxes by transferring the unstable cluster
(shaded blocKssuccessively to the left till a stable configuration is reacliiedLog-log plot of the avalanche size distributi®{m) for the
LLS (solid symbol$ and the ILLS(open symbolsfor two different system size$2(m) for the ILLS falls off with a characteristic length
scale independent df.

In Ref. [6], KSG also introduced and studied timertial In Fig. 2, we plot the two width§V; andW, for a range of
limited local sandpilgILLS) which mimics the effect of in-  system sized =2" with 6=<n<14 (that is 64<L<16384).
ertia of the falling grains in a real sand pile. The instability It is seen that the two widths have different asymptotic be-
condition setting off an avalanche is same as that in the LL$aviors and give two different values of The roughness
but the condition of stopping is changed. A cluster of grains,~0.33, computed fronW,; (and W, up to L<L/), is in
when first destabilized is assigned a momentpm0 and  accordance with the predictions of Ed). The asymptotic
each time the front of the cluster reaches an unstable sitg, ghness computed frol,, beyond the crossover system
(z>2.) it gathers momentunp—p+1. If it cOmes across  gjze| 1024, «=0.65+0.02, is larger than that for an in-

a stable sitep decreases by an amountp—p—r. The  otace generated by a simple random walk. This is surpris-
cluster continues moving down as long@s 0 and leaves . gince prima facie the definitions in Eq(2) are expected
the pile if it reaches the site=0. Clearly,r=c corresponds ,°he equivalent as far as asymptotic scaling is concerned
to the_ ITLS. It was note_d by KSG that I_LLS is not critical _for [11]. In fact, for the ILLS, we have computatl,; andW, for

any finite value ofr which is reflected in the corresponding | _50 (Fig. 2, inset and it is seen that they indeed have the
avalanche size distributioiFig. 1b)]. same asymptotic behavior and hence, a unique value of

To study the interfacial fluctuations in these models, we,_q 33
start With. an initially flat pile[ h;(0)=0, V. 1] and add grains We now show that the crossoverVid, in the LLS can be
till the pile reaches a steady state with the mean surfacg, e to the fact that the time averaged steady state profile is

making a critical angle) (tany, ... =3/2) with the horizon- o jinear je. (h(t))#5i and this makes the two defini-
tal. The closed boundary condition iat L ensures that the

pile has only one surface with the critical slof@]. The
width of the interface, in the steady state, can be measured ii
two ways:

WAL= 2 (Thi(H)—(m)]?), ey e

g (e slope=0.33
2 1 = o~ 2
Wa(L)=1 2 ([hi(D—s(DiT?), @ O
i=1
» slope=0.18
wheres(t) =2[S{_h;(t)]/L(L+1) is the mean slope of the 0/@,/&
interface about which sum ohstantaneousheight fluctua- LA
tions vanish=_,[h;(t)—s(t)i]=0. In both definitions(2) a7 . _
100 1000 10000

above the ensemble average) is identical to the time av-
erage in the steady state.

For large enough system sizes the scaling_ hypo_thesis IS FIG. 2. Width vs system size for LLSW, (circles and W,
expected to be valid and the roughness exponestdefined  (squarey are obtained using Eq2) while Ws (triangles is com-

System size (L)

through puted from Eq.(5) below. W, (diamond$ ~L%8 asymptotically.
Inset: W; (circles and W, (squares and Wg (triangles for the
Wy AL)~L%, L—ce. 3 ILLS with r=20.
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tions nonequivalent. Although, this nonlinearity (@f;(t)) is

a consequence of the boundary effects and is present for th
ILLS as well, we demonstrate that the presence of SOC in
LLS results in special scaling properties which is responsible
for the observed differences between asymptotic scalings o

W, andW,. It can be shown thatV; andW, are related by
4

where Wg(L) is the root-mean-squargéms) wandering of
the steady state interface profilk;),

WA(L)+WA(L)=W3(L)+W3(L),

1 L
WE(L)=1 2 [(h)—STT7, (5)
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with s=(s(t)) being the mean slope of the steady state pro- FIG. 3. Deviation of the steady state height profile from straight

file satisfying="_,[(h;)—Si]=0. The second term on the

left of (4), W3(L)=([s(t)—S]2)(L+1)(2L+1)/6, is the

line. For the LLS, the simulation dat@olid curve are well ap-
proximated by the analytic forn@) (dashed curvefor L=2048

contribution to the interface width due to instantaneous slop#&ith optimally chosen values of parametgrs and y. The dotted

fluctuations and is the analog of tleenter of masg$luctua-
tions in the case of moving interfacgg). In fact, in the case
of moving interfaces/N, dominates for large length scales,
and hencéaV, is taken as the width. As it turns out, for the
anchored interfaces we deal with he¥é, is negligible com-
pared to the other terms in E@}) asL—o0. From Fig. 2, it
is evident that the crossover W,(L) for the LLS is due to
the contribution fromWWs. In the following we show that, for

curve is for the ILLS withr =20. Inset: Average densi&1 of sites
with slopez;=n in the steady state as a function of system &ize

hence in order to balance the finite input fldy the diffu-
sion constantD(p—0) has to diverge appropriate(.2].
Without a loss of generality the leading divergenceDiris
taken to be a simple pole and the evolutiorp¢k,t) is thus
[13]

the LLS, the special form of the nonlinear steady state profile

(hi(t)), which results inWs~L%®® is a consequence of the
singular diffusion associated with the SOC state.
In Ref.[12], using a simple model, Carlsat al. demon-

Alp)

ap 0
- = ’ D(p):_'
p?

gt ox ©)

ap
D(p)5+77

strated that the SOC state of the system is associated with the

vanishing of the density afroughsconcommittant with the

HereA(p) is taken to be a smoothly varying function in the

divergence of the corresponding diffusion coefficient. Thefélevant interval &p=1.

troughs are defined as the sites for whigk 0 so that, in the
LLS, an avalanche necessarily stops at a troagheave the

In order to compute the steady state density prgfiie)
= p(X,t—x) of troughs, we note that, ds—x, the system

system at=0). On a coarse grained level we define a set ofS arbitrarily close to criticalityp—0), and henceé\(p) may

densities {p,(x,t);n=—o, ...,—1,0,1,2 where p,(x,t)
denotes the local density of sites with=n. It follows that
the coarse grained local slogéx,t), which is locally con-

be set to a constait,=A(0). One carthen readily integrate
the current equatiorD(p)dp/dx=—J,, subjected to the
boundary conditiorp(L)=p, , to obtain

served by the dynamics, may be expressed in terms of the

pn's asz(x,t)==2___npy(x,t). The open boundary condi-
tion ati=0 impliesh(0,t) =0, and the closed boundary con-
dition ati=L is modeled by setting(L,t)=0. The trough
densityp(x,t)EEﬂ?mpn(x,t) is not strictly conserved. In
the ‘01’ model considered in Rgf12] the slope has only two
valuesz;=0 (trough and 1, and, hence, bothas well asp
are strictly conserved and are related simplyzasl—p.
Although p is not strictly conserved for LLS and ILLS we
still approximate its dynamical evolution by the continuity
equation, d;p(x,t)+d,J[ p(x,t)]=0. Phenomenologically,
the trough currend consists of three part$i) current due to
addition of grains]y, (ii) avalanche curreni,, and (i) a
microscopic noise terny(x,t). In analogy with driven dif-
fusive systemg6] the phenomenological form of the ava-
lanche current is written asJa(p)=ap+bp?+---
—D(p)dyp. As in the 01 model, the critical state of the
system [ —o, r=x) is associated withp, d,p—0 and

p(X)=p [1+y(L—x)]"", @)
where 6=1/(¢—1) and y=—J, pi’/(6A,). The average
density of the troughs;TEL‘lf'ap(x)dx thus scales with
system size asymptotically gs=p, (yL) % (1—6). From
Fig. 3 (insey, we obtaind=0.33 and thusp=4 for the LLS,
which are the same as the corresponding values obtained in
Ref.[12] by direct measurement @ (p) in a closed system.
In the following we find an approximate numerical rela-
tion betweerp(x) to z(x) which would enable us to find the
steady state interface profite(x) = [§z(x)dx, form (7). In
Fig. 3 (insey, we plot the average densitiep,
=L 1f5dx(pn(x,t)) in the steady state as functions of the
system sizel. We note that, at increases, whilep;=)p,
~1/2 remain finite, densities of all the trough sites vanish
algebraically withL: pg,p_;~L % p_,~L % andp,’s

with n< —3 are negligible. Hence, in the limit of large we
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can approximate the total trough density @s po+p_1.
From the normalization conditioEﬁ:,wpn(x,t)=1 it fol-
lows thatp;+p,=1—p and we find numerically thap;
—p,=0.46p. Thus, for large systems, we may wriz€x)
=2ps+p1—p_1=3/12— kp(X), where numerically k=2
[14]. Thus,hy(x) is given approximately by

1—0)

8

1+ y(L—x)

ho(x)~ T+ L

3 xp(1+ yL)l—ﬂ(
2% Y(1-0)

In Fig. 3, using the approximate expression fgix) from
Eq. (7) with ¢=4, we comparehy(x) with that obtained

PHYSICAL REVIEW E69, 031105 (2004
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numerically and notice that the agreement is rather good

given the nature of the approximations involedb)].

TheL dependence diVg of the steady state profile can be

computed from Eq(8) and turns out to be

Wg(L)~L1"°. 9)

For the LLS with #=0.33, Wg(L)~L%5¢ dominatesW,
~L¥ and W,~L%8 in Eq. (4) and hence, for large,

FIG. 4. Interface width of the disordered sandpile as a function
of system size. The squares represéftand circles represe/
= \/szfwsz. The parameters chosen are the same as in[Ref.
The straight lines have slope 0.&btted and 0.72(dashedl Inset:
The steady state interface profile, after subtracting the mean linear
profile.

Lastly, we briefly point out possible pitfalls of usings,
naively without properly accounting for the underlying
steady state profile, even in systems which do not show

W, (L)~ L% —in very good agreement with our numerical SOC. Recently, Barker and Mehfia0] studied a disordered

results (Fig. 2. It is interesting to note thawv,; and W,
would have different asymptotic behaviorsé2/3, i.e., if
¢>5/2. For the 01 model studied in R¢L2] it is shown that
¢=3 exactly and thudV,(L)~L? for the corresponding
interface[16]. Our conjecture thatV; and W, would have

version of the LLS where disorder was introduced by allow-
ing the added grains to have an aspect ratio different from
unity: grains are now rectangles and are deposited on the
sandpile with fixed probabilities of landing on their larger or
smaller edges. Thus, the heidhtof columni, no longer an

different asymptotic behavior for SOC systems would be indinteger, is the sum of the vertical edges of all the grains in

valid if one can devise a model witth<<5/2.

that column. In addition to the threshold dynamics of LLS,

Next, we present a general argument as to why, for nondynamical reorientation of cluster of grains were allowed.

critical models such as the ILLS, we do not expect any amThey found that the larger sandpiles cease to display SOC
biguity in the roughness exponent. The essential differencwhich is reflected in the emergence of a preferred size of the
between critical and noncritical models is the presence of atarge avalanches in the associated drop number distributions.
additional length scaléapart from system size and the mi- Their numerical studies ofV, showed that while for very
croscopic cutoff which shows up in the avalanche size dis- small systemsl(=100) the roughness exponesm0.34, it
tribution (e.g., Fig. 1 for ILLS as well as governs the decay seems to crossover to a much larger valae0.72 for larger

of the boundary effects into the bulk. In the ILLS this length system sizes, 1GOL <400 (Fig. 4). Our preliminary numeri-
scale is related to the parameterTo see this we first note cal studies, using the same parameters as in[R€], of yet

that as a cluster moves down its momentpmnakes a ran- larger systems (560L<2048) show that in fact the cross-
dom walk[6]. If the mean density of troughs<1/r then over seen in Ref.[10] is evidently transient and the
most avalanches leave the system, resulting in net drainagasymptotic roughness exponent goes backyte0.33 (see

and if p>1/r then most avalanches stop on the pile, leadingFig. 4).

a to net growth of the pile. Thus, in the steady state one has In fact, the crossover reported in RgL0] is less notice-

a finite density of troughg=1/r and thus the mean spacing able if one looks atW= \/WZZ—WS2 instead ofW, (Fig. 4)
between the troughs d#r appears as the additional length [17]. This is in accordance with our conjecture since the
scale. As already discussed above, the curdép} now has  disordered system is not critical, although the steady state
a nonzero systematic pa@ip+bp? ..., in addition to the profile is nonlinear(Fig. 4, inse}, it does not affect the
finite diffusion term. Such a systematic current, e.g., a termasymptotic roughness measured\Wy. The transient cross-
such asap, results in the effects of the boundaries decayingover seen iV, here is similar to what is seen for the ILLS
exponentially inside the bulk. This is in contrast to the longin Fig. 2, inset.

ranged power law decay in the LLS, which is reflected in the In summary, we have studied the surface roughness of a
forms of p(x) andhy(x). Although the steady state surface is prototype model of SOC and its modifications in one dimen-
nonlinear (Fig. 3), its rms wandering/Ns is bounded and sion. We find that one needs to be careful in defining quan-
does not alter the asymptotic scalingWw5. tities such as the interface width, since the special form of
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