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Roughness of sandpile surfaces
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We study the surface roughness of prototype models displaying self-organized criticality~SOC! and their
noncritical variants in one dimension. For SOC systems, we find that two seemingly equivalent definitions of
surface roughness yield different asymptotic scaling exponents. Using approximate analytical arguments and
extensive numerical studies we conclude that this ambiguity is due to the special scaling properties of the
nonlinear steady state surface. We also find that there is no such ambiguity for non-SOC models, although there
may be intermediate crossovers to different roughness values. Such crossovers need to be distinguished from
the true asymptotic behavior, as in the case of a noncritical disordered sandpile model studied by Barker and
Mehta @Phys. Rev. E61, 6765~2000!#.
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Since the original proposal by Bak, Tang, and Wisenf
@1# there has been a large body of work directed towa
understanding the ubiquity of scale invariance in externa
driven open dissipative systems using the concept of s
organized criticality ~SOC!. The sandpile is a prototyp
model system which has been extensively used as a p
digm of SOC@2,3#. The principal aim has been to elucida
how slowly driven dissipative systems with fast relaxati
mechanisms display long-tailed distributions of activ
sizes. Recently, there has been a resurgance of intere
sandpile models in order to understand SOC in connec
with better understood scale invariance in other nonequ
rium phenomena such as absorbing state phase transition@4#
and driven interfaces@5#.

In Ref. @6#, Krug, Socolar, and Grinstein~KSG! studied
the surface fluctuations in a prototype model of SOC,
limited local sandpile~LLS! @3# and its variations in one
spatial dimension and concluded that the interfacial fluct
tions, although nontrivial, are evidently unconnected to
criticality of the system. In fact, they argued that the evo
tion of height fluctuationsh̃(x,t) can be described by a
extension of the Kardar-Parisi-Zhang~KPZ! @7,8# equation
for an anchored interface,

] th̃5D]x
2h̃1c]xh̃1l~]xh̃!21h~x,t !, ~1!

where h(x,t) is a Gaussian white noise. The linear ter
c]xh̃ is more relevant than the diffusion termD]x

2h̃ and the

KPZ nonlinearityl(]xh̃)2 ~in a renormalization group sense!
and, since the interface is anchored, cannot be eliminate
a Galilean shift. This term is responsible for transporti
fluctuations up the pile thus relating the spatial roughnes
the anchored interface to the dynamical roughening o
moving KPZ interface ind51, aLLS5bKPZ(1D)51/3. This
argument can be easily extended to higher dimensions.

In this paper we study interface roughness in LLS a
related models and find that effect of the criticality of t
system is somewhat subtle and is due to the nontrivial na
of the steady state surface. The value of surface rough
depends on whether it is measured about this nontri
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steady state profile or about the mean instantaneous sur
the latter being the correct choice for moving interfaces. T
assertion made by KSG is valid only ifh̃ in Eq. ~1! is defined
as the fluctuation around the nonlinear steady state surf
We also study modifications of the LLS which have nonli
ear steady state profiles but which do not display SOC
find that there is no such ambiguity in the asymptotic roug
ness exponent. Thus, we conjecture that the roughness e
nent is uniquely defined for systems not displaying SO
even though they may possess nontrivial steady state
faces @9#. For SOC systems the ambiguity exists and o
needs to define the roughness appropriately. Our results
important bearings on studies such as the recent one
Barker and Mehta@10# who observed an anomalously larg
roughness exponent in a sandpile model with structural
order.

The limited local sandpile model ind51 is defined as
follows @see Fig. 1~a!#: on a one dimensional lattice of site
i 50,1, . . . ,L we define an integer height variablehi . One
grain of sand added at a randomly chosen site increase
height at that site by 1:hi→hi11. The configuration is
stable if the local slopes satisfyzi5hi 112hi<zc for all i,
where we chosezc52 ~our results are essentially unchang
for zc>2). An instability occurs when by addition of grain
at sitei 11, the local slope exceeds the thresholdzi.zc ; in
this casezc grains are transferred from columni 11 to col-
umn i. Subsequently, columnsi and i 12 may become un-
stable, setting off further topplings, leading to an avalanc
The grains involved in an avalanche leave the system if t
reach sitei 50 @h0(t)50,; t#. A new grain is added afte
the system has attained a stable configuration. The final c
figuration reached is independent of the order in which
sites are updated in case more than one site become uns
We count one unit of time~Monte Carlo step! for every L
grains added.

The standard way of quantifying avalanches in these s
tems is to count the numberm of grains that leave the pile
after each deposition@3#. The criticality of the model is re-
flected in a broad probability distribution of avalanche siz
P(m) @Fig. 1~b!#, which has no other length scale except t
system sizeL.
©2004 The American Physical Society05-1
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FIG. 1. ~a! Dynamics of the sandpile: An initial surface~thick line!, on becoming unstable, relaxes by transferring the unstable clu
~shaded blocks! successively to the left till a stable configuration is reached.~b! Log-log plot of the avalanche size distributionP(m) for the
LLS ~solid symbols! and the ILLS~open symbols! for two different system sizes.P(m) for the ILLS falls off with a characteristic length
scale independent ofL.
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In Ref. @6#, KSG also introduced and studied theinertial
limited local sandpile~ILLS! which mimics the effect of in-
ertia of the falling grains in a real sand pile. The instabil
condition setting off an avalanche is same as that in the L
but the condition of stopping is changed. A cluster of gra
when first destabilized is assigned a momentump50 and
each time the front of the cluster reaches an unstable
(zi.zc) it gathers momentum,p→p11. If it comes across
a stable site,p decreases by an amountr: p→p2r . The
cluster continues moving down as long asp.0 and leaves
the pile if it reaches the sitei 50. Clearly,r 5` corresponds
to the LLS. It was noted by KSG that ILLS is not critical fo
any finite value ofr which is reflected in the correspondin
avalanche size distribution@Fig. 1~b!#.

To study the interfacial fluctuations in these models,
start with an initially flat pile@hi(0)50, ; i # and add grains
till the pile reaches a steady state with the mean surf
making a critical anglec (tancL→`53/2) with the horizon-
tal. The closed boundary condition ati 5L ensures that the
pile has only one surface with the critical slope@9#. The
width of the interface, in the steady state, can be measure
two ways:

W1
2~L !5

1

L (
i 51

L

^@hi~ t !2^hi&#2&,

W2
2~L !5

1

L (
i 51

L

^@hi~ t !2s~ t !i #2&, ~2!

wheres(t)52@( i 51
L hi(t)#/L(L11) is the mean slope of th

interface about which sum ofinstantaneousheight fluctua-
tions vanish( i 51

L @hi(t)2s(t) i #50. In both definitions~2!
above the ensemble average^¯& is identical to the time av-
erage in the steady state.

For large enough system sizes the scaling hypothes
expected to be valid and the roughness exponenta is defined
through

W1,2~L !;La, L→`. ~3!
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In Fig. 2, we plot the two widthsW1 andW2 for a range of
system sizesL52n with 6<n<14 ~that is 64<L<16384).
It is seen that the two widths have different asymptotic b
haviors and give two different values ofa. The roughness
a.0.33, computed fromW1 ~and W2 up to L&Lc), is in
accordance with the predictions of Eq.~1!. The asymptotic
roughness computed fromW2, beyond the crossover syste
size Lc;1024, a50.6560.02, is larger than that for an in
terface generated by a simple random walk. This is surp
ing since,prima facie, the definitions in Eq.~2! are expected
to be equivalent as far as asymptotic scaling is concer
@11#. In fact, for the ILLS, we have computedW1 andW2 for
r 520 ~Fig. 2, inset! and it is seen that they indeed have t
same asymptotic behavior and hence, a unique value
a.0.33.

We now show that the crossover inW2 in the LLS can be
traced to the fact that the time averaged steady state profi
not linear, i.e.,̂ hi(t)&Þ s̄ i and this makes the two defini

FIG. 2. Width vs system size for LLS:W1 ~circles! and W2

~squares! are obtained using Eq.~2! while WS ~triangles! is com-
puted from Eq.~5! below. Wc ~diamonds! ;L0.18 asymptotically.
Inset: W1 ~circles! and W2 ~squares! and WS ~triangles! for the
ILLS with r 520.
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ROUGHNESS OF SANDPILE SURFACES PHYSICAL REVIEW E69, 031105 ~2004!
tions nonequivalent. Although, this nonlinearity of^hi(t)& is
a consequence of the boundary effects and is present fo
ILLS as well, we demonstrate that the presence of SOC
LLS results in special scaling properties which is respons
for the observed differences between asymptotic scaling
W1 andW2. It can be shown thatW1 andW2 are related by

W2
2~L !1Wc

2~L !5W1
2~L !1WS

2~L !, ~4!

where WS(L) is the root-mean-square~rms! wandering of
the steady state interface profile^hi&,

WS
2~L ![

1

L (
i 50

L

@^hi&2 s̄i #2, ~5!

with s̄5^s(t)& being the mean slope of the steady state p
file satisfying ( i 50

L @^hi&2 s̄i #50. The second term on th
left of ~4!, Wc

2(L)5^@s(t)2 s̄#2&(L11)(2L11)/6, is the
contribution to the interface width due to instantaneous sl
fluctuations and is the analog of thecenter of massfluctua-
tions in the case of moving interfaces@8#. In fact, in the case
of moving interfacesWc dominates for large length scale
and henceW2 is taken as the width. As it turns out, for th
anchored interfaces we deal with here,Wc is negligible com-
pared to the other terms in Eq.~4! asL→`. From Fig. 2, it
is evident that the crossover inW2(L) for the LLS is due to
the contribution fromWS . In the following we show that, for
the LLS, the special form of the nonlinear steady state pro
^hi(t)&, which results inWS;L0.66, is a consequence of th
singular diffusion associated with the SOC state.

In Ref. @12#, using a simple model, Carlsonet al. demon-
strated that the SOC state of the system is associated wit
vanishing of the density oftroughsconcommittant with the
divergence of the corresponding diffusion coefficient. T
troughs are defined as the sites for whichzi<0 so that, in the
LLS, an avalanche necessarily stops at a trough~or leave the
system ati 50). On a coarse grained level we define a se
densities $rn(x,t);n52`, . . . ,21,0,1,2% where rn(x,t)
denotes the local density of sites withzi5n. It follows that
the coarse grained local slopez(x,t), which is locally con-
served by the dynamics, may be expressed in terms of
rn’s asz(x,t)5(n52`

2 nrn(x,t). The open boundary condi
tion at i 50 impliesh(0,t)50, and the closed boundary con
dition at i 5L is modeled by settingz(L,t)50. The trough
densityr(x,t)[(n52`

0 rn(x,t) is not strictly conserved. In
the ‘01’ model considered in Ref.@12# the slope has only two
valueszi50 ~trough! and 1, and, hence, bothz as well asr
are strictly conserved and are related simply asz512r.
Although r is not strictly conserved for LLS and ILLS w
still approximate its dynamical evolution by the continui
equation, ] tr(x,t)1]xJ@r(x,t)#50. Phenomenologically
the trough currentJ consists of three parts:~i! current due to
addition of grainsJ0, ~ii ! avalanche currentJA , and ~iii ! a
microscopic noise termh(x,t). In analogy with driven dif-
fusive systems@6# the phenomenological form of the ava
lanche current is written asJA(r)5ar1br21•••

2D(r)]xr. As in the 01 model, the critical state of th
system (L→`, r 5`) is associated withr, ]xr→0 and
03110
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hence in order to balance the finite input fluxJ0, the diffu-
sion constantD(r→0) has to diverge appropriately@12#.
Without a loss of generality the leading divergence inD is
taken to be a simple pole and the evolution ofr(x,t) is thus
@13#

]r

]t
5

]

]x FD~r!
]r

]x
1hG , D~r!5

A~r!

rf
. ~6!

HereA(r) is taken to be a smoothly varying function in th
relevant interval 0<r<1.

In order to compute the steady state density profiler(x)
5r(x,t→`) of troughs, we note that, asL→`, the system
is arbitrarily close to criticality~r→0!, and henceA(r) may
be set to a constantA05A(0). One canthen readily integrate
the current equationD(r)dr/dx52J0, subjected to the
boundary conditionr(L)5rL , to obtain

r~x!'rL@11g~L2x!#2u, ~7!

where u51/~f21! and g52J0 rL
1/u/(uA0). The average

density of the troughsr̄[L21*0
Lr(x)dx thus scales with

system size asymptotically asr̄.rL(gL)2u/(12u). From
Fig. 3 ~inset!, we obtainu.0.33 and thusf.4 for the LLS,
which are the same as the corresponding values obtaine
Ref. @12# by direct measurement ofD(r) in a closed system

In the following we find an approximate numerical rel
tion betweenr(x) to z(x) which would enable us to find the
steady state interface profileh0(x)5*0

xz(x)dx, form ~7!. In
Fig. 3 ~inset!, we plot the average densitiesr̄n

[L21*0
Ldx^rn(x,t)& in the steady state as functions of th

system sizeL. We note that, asL increases, whiler̄1. r̄2
'1/2 remain finite, densities of all the trough sites van
algebraically withL: r̄0 ,r̄21;L20.33,r̄22;L20.6, and r̄n’s
with n<23 are negligible. Hence, in the limit of largeL, we

FIG. 3. Deviation of the steady state height profile from straig
line. For the LLS, the simulation data~solid curve! are well ap-
proximated by the analytic form~8! ~dashed curve! for L52048
with optimally chosen values of parametersrL and g. The dotted

curve is for the ILLS withr 520. Inset: Average densityr̄n of sites
with slopezi5n in the steady state as a function of system sizeL.
5-3
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OLIVEIRA, MENDES, AND TRIPATHY PHYSICAL REVIEW E69, 031105 ~2004!
can approximate the total trough density asr̄. r̄01 r̄21.
From the normalization condition(n52`

2 rn(x,t)51 it fol-
lows that r11r2512r and we find numerically thatr̄1
2 r̄2.0.46r̄. Thus, for large systems, we may writez(x)
.2r21r12r21.3/22kr(x), where numerically k.2
@14#. Thus,h0(x) is given approximately by

h0~x!'
3

2
x2

krL~11gL !12u

g~12u! S 12F11g~L2x!

11gL G12uD .

~8!

In Fig. 3, using the approximate expression forr(x) from
Eq. ~7! with f54, we compareh0(x) with that obtained
numerically and notice that the agreement is rather g
given the nature of the approximations involved@15#.

TheL dependence ofWS of the steady state profile can b
computed from Eq.~8! and turns out to be

WS~L !;L12u. ~9!

For the LLS with u.0.33, WS(L);L0.66 dominatesW1
;L1/3 and Wc;L0.18 in Eq. ~4! and hence, for largeL,
W2(L);L0.66—in very good agreement with our numeric
results ~Fig. 2!. It is interesting to note thatW1 and W2
would have different asymptotic behaviors ifu,2/3, i.e., if
f.5/2. For the 01 model studied in Ref.@12# it is shown that
f53 exactly and thusW2(L);L1/2 for the corresponding
interface@16#. Our conjecture thatW1 and W2 would have
different asymptotic behavior for SOC systems would be
valid if one can devise a model withf,5/2.

Next, we present a general argument as to why, for n
critical models such as the ILLS, we do not expect any a
biguity in the roughness exponent. The essential differe
between critical and noncritical models is the presence o
additional length scale~apart from system size and the m
croscopic cutoff! which shows up in the avalanche size d
tribution ~e.g., Fig. 1 for ILLS! as well as governs the deca
of the boundary effects into the bulk. In the ILLS this leng
scale is related to the parameterr. To see this we first note
that as a cluster moves down its momentump makes a ran-
dom walk @6#. If the mean density of troughsr,1/r then
most avalanches leave the system, resulting in net drain
and if r.1/r then most avalanches stop on the pile, lead
a to net growth of the pile. Thus, in the steady state one
a finite density of troughsr51/r and thus the mean spacin
between the troughs 1/r5r appears as the additional leng
scale. As already discussed above, the currentJ(r) now has
a nonzero systematic partar1br2 . . . , in addition to the
finite diffusion term. Such a systematic current, e.g., a te
such asar, results in the effects of the boundaries decay
exponentially inside the bulk. This is in contrast to the lo
ranged power law decay in the LLS, which is reflected in
forms ofr(x) andh0(x). Although the steady state surface
nonlinear ~Fig. 3!, its rms wanderingWS is bounded and
does not alter the asymptotic scaling ofW2.
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Lastly, we briefly point out possible pitfalls of usingW2
naively without properly accounting for the underlyin
steady state profile, even in systems which do not sh
SOC. Recently, Barker and Mehta@10# studied a disordered
version of the LLS where disorder was introduced by allo
ing the added grains to have an aspect ratio different fr
unity: grains are now rectangles and are deposited on
sandpile with fixed probabilities of landing on their larger
smaller edges. Thus, the heighthi of column i, no longer an
integer, is the sum of the vertical edges of all the grains
that column. In addition to the threshold dynamics of LL
dynamical reorientation of cluster of grains were allowe
They found that the larger sandpiles cease to display S
which is reflected in the emergence of a preferred size of
large avalanches in the associated drop number distributi
Their numerical studies ofW2 showed that while for very
small systems (L&100) the roughness exponenta.0.34, it
seems to crossover to a much larger valuea.0.72 for larger
system sizes, 100&L&400~Fig. 4!. Our preliminary numeri-
cal studies, using the same parameters as in Ref.@10#, of yet
larger systems (500&L<2048) show that in fact the cross
over seen in Ref.@10# is evidently transient and the
asymptotic roughness exponent goes back toa.0.33 ~see
Fig. 4!.

In fact, the crossover reported in Ref.@10# is less notice-
able if one looks atW5AW2

22WS
2 instead ofW2 ~Fig. 4!

@17#. This is in accordance with our conjecture since t
disordered system is not critical, although the steady s
profile is nonlinear~Fig. 4, inset!, it does not affect the
asymptotic roughness measured byW2. The transient cross
over seen inW2 here is similar to what is seen for the ILL
in Fig. 2, inset.

In summary, we have studied the surface roughness
prototype model of SOC and its modifications in one dime
sion. We find that one needs to be careful in defining qu
tities such as the interface width, since the special form

FIG. 4. Interface width of the disordered sandpile as a funct
of system size. The squares representW2 and circles representW
5AW2

22WS
2. The parameters chosen are the same as in Ref.@10#.

The straight lines have slope 0.33~dotted! and 0.72~dashed!. Inset:
The steady state interface profile, after subtracting the mean li
profile.
5-4
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the steady state shape of the surface in systems with S
can result in different asymptotic behaviors of otherw
equivalent definitions. Although there is no such ambigu
for noncritical models, still there may be crossovers at in
mediate length scales which should not be taken as the
asymptotic behavior.
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